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Nanoparticle interaction with the immune system
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When nanoparticles enter the body, their interactions with cells are almost unavoidable. Unintended nanoparticle 
interaction with immune cells may elicit a molecular response that can have toxic effects and lead to greater susceptibility 
to infectious diseases, autoimmune disorders, and cancer development. As evidenced by several studies, nanoparticle 
interactions with biological systems can stimulate inflammatory or allergic reactions and activate the complement system. 
Nanoparticles can also stimulate immune response by acting as adjuvants or as haptens. Immunosuppressive effects have 
also been reported. This article gives a brief review of in vitro and in vivo research evidencing stimulatory or suppressive 
effects of nanoparticles on the immune system of mammals. In order to ensure safe use of nanosized particles, future 
research should focus on how their physical and chemical properties influence their behaviour in the biological environment, 
as they not only greatly affect nanoparticle-immune system interactions but can also interfere with experimental assays.
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We are currently witnessing a rapid progress of 
nanotechnology and an increasing manufacture and use of 
engineered nanoparticles. Nanoparticles are defined as 
particles that have at least one dimension smaller than 
100 nm (1). Their small size means an increased proportion 
of surface atoms and therefore changed physicochemical 
properties (2). These properties can be used beneficially for 
many applications, from electronics, cosmetics, and textile 
industry to drug delivery and bioimaging (3). However, the 
same properties can make nanoparticles more harmful to 
living organisms due to increased reactivity and easy 
penetration into organisms and cells (4). Several studies 
have shown that particles of the same chemical composition 
but different size pose different risk; smaller particles are 
more harmful (5-7). Numerous nanotoxicological studies 
have focused on cytotoxicity (8-10), which occurs at a 
relatively high nanoparticle concentration/dose. At a lower 
concentration/dose, the sub-lethal and long-term effects on 
cells can occur (11-14). Studying the immunomodulatory 
effects of nanoparticles is particularly important, because 
immunocompromised organisms are susceptible to 
infections and cancer development (15). The primary 
function of the immune system is to detect and recognise 
foreign substances in order to protect the host. Nanoparticles 
can interfere with this function or can themselves be 
recognised as foreign antigens and thus elicit immune 
response (16). A disturbance in the immune system can 

lead to severe medical conditions (17) and understanding 
how different factors influence the host defence 
mechanisms is an important part of toxicological 
research.

Nanoparticles can enter the body unintentionally 
through the gastrointestinal tract, skin, and airways or 
can be intentionally administered to the body with 
biomedical applications (18). Inside the body, there is a 
high probability that nanoparticles will come into contact 
with immune cells, which can lead to nanoparticle-
immune system interactions (15, 19). These interactions 
have an immunomodulatory potential, as they can 
activate or suppress immune function (Figure 1) and lead 
to inflammation, increased susceptibility to infectious 
diseases, or even to autoimmune diseases or cancer (15). 
However, in some biomedical applications, for example in 
vaccine delivery (19, 20), we can design nanoparticles 
for targeted modulation of immune response.

Stimulation of immune response

Depending on their physicochemical properties 
nanoparticles can stimulate innate and adaptive immune 
response (Table 1). However, it is still unclear how 
individual nanoparticles affect it.

Activation of innate immune response

When nanoparticles enter the body, they can interact 
with immune cells and trigger inflammatory response. 
Inflammatory response is accompanied by the secretion of 
signalling molecules (cytokines, chemokines) that provide 
communication between immune cells and coordinate 
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molecular events. Positively charged nanoparticles 
usually possess a higher inflammatory potential than 
negatively charged or neutral nanoparticles (20). This 
can be explained by the fact that macrophages have a 
negatively charged sialic acid on their surface and readily 
interact with cationic substances (21). Macrophages 
recognise foreign antigens with their toll-like receptors 
(TLRs), which bind to corresponding antigens and 
activate the signal transduction pathway and inflammatory 
response (21). In their in vitro experiment Lucarelli et 
al. (22), exposed human macrophages to non-toxic 
concentrations of different SiO2, TiO2, ZrO2, and Co 
nanoparticles and observed increased expression of TLR 
receptors and production of inflammatory cytokines. The 
experiment showed that different nanoparticles triggered 
inflammatory response in different ways. SiO2 
nanoparticles induced the production of inflammatory 
cytokines IL-1β and TNF-α, and Co nanoparticles inhibited 
anti-inflammatory IL-1RA and induced inflammatory 
TNF-α (22). Another in vitro study (23) showed a cytotoxic 
and inflammatory effect of Ag nanoparticles on rat brain 
microvascular endothelial cells (RBMEC), with an 
increased release of proinflammatory mediators IL-1β, TNF, 
and PGE-2. The effect of Ag nanoparticles was significantly 
stronger with smaller (25 nm) than with larger particles (40 
and 80 nm). Chuang et al. (24) recently showed that the 
intensity of inflammatory response induced by carbon 
black nanoparticles of different size correlated with their 
surface area. Xia et al. (25) observed a cytotoxic effect of 
ZnO nanoparticles and the induction of inflammatory 
response in RAW 264.7 and BEAS-2B cell lines. In contrast, 
CeO2 and TiO2 nanoparticles did not elicit any such effect.

The results of several in vivo studies have also shown 
how nanoparticles can affect inflammatory response. Park 
et al. (26) treated mice with Fe3O4 nanoparticles by 
intratracheal instillation and noticed increased production 
of pro-inflammatory cytokines IL-1, TNF-α, and IL-6. They 
also reported increased production of Th0-type cytokine 
IL-2, Th1-type cytokine IL-12, Th2-type cytokines IL-4 
and IL-5, TGF-β, and an increased production of IgE. 
Kaewamatawong et al. (27) have found that intratracheally 
instilled SiO2 nanoparticles can cause pulmonary 
inflammation in mice. Nishimori et al. (28) observed that 
i.v. injected SiO2 particles in mice had size-dependent 
hepatotoxic effects. Only smaller particles (<100 nm) 
caused higher serum markers of liver injury, serum 
aminotransferase, and inflammatory cytokines IL-6 and 
TNF-α. Cho et al. (29) noticed a gene expression pattern 
typical of apoptosis and inflammation in mice liver after 
i.v. administration of Au nanoparticles coated with 
polyethylene glycol (PEG). Single-walled carbon nanotubes 
were also hypothesized to cause inflammation (30). Some 
studies however suggest that the main cause of 
inflammation are impurities resulting from nanoparticle 
synthesis (31).

Exposure to nanoparticles can also interfere with 
response to infection. Mice exposed to carbon nanotubes 
before infection with Listeria monocytogenes had an 
enhanced acute pulmonary inflammation and delayed 
bacterial clearance (decreased phagocytosis and nitric oxide 
production) (32).

Activation of the complement system

The complement system is an important part of the 
innate immune system that helps antibodies and phagocytic 
cells to remove pathogens from the host. There are a number 
of reports claiming that nanoparticles activate the 
complement system via different pathways (33-40). 
Furthermore, altering nanoparticle surface properties can 
increase or decrease complement activation (33, 35, 40). 
Pondman et al. (38) have shown that complement 
opsonisation of carbon nanotubes enhances their uptake by 
U937 cells without inflammatory response. Pedersen et al. 
(36) have shown that dextran-coated Fe3O4 particles can 
activate the complement system. In another study, Au 
nanoparticles did not activate the complement system - even 
though complement proteins prevailed in the corona - nor 
did they affect complement activation by a known activator 
(41).

Activation of adaptive immune response

Unlike the innate immune system, the adaptive immune 
system is antigen-specific, requires some time to achieve 
its maximum effect, and typically generates an 
immunological memory. It consists of humoral and cellular 
antigen-specific responses, and nanoparticles can stimulate 
both. Liu et al. (42) found that polyhydroxylated fullerenes 
[C60(OH)20] stimulate the production of Th1 cytokines and 
decrease the production of Th2 cytokines (42). C60(OH)20 
nanoparticles show a low cytotoxic effect on immune cells, 
but significantly stimulate TNF-α release, which has an 
important role in the removal of abnormal cells. In addition, 
they seem to suppress tumours in vivo, as they increase the 
CD4+/CD8+ lymphocyte ratio.

Some nanoparticles have an epitope structure to which 
specific antibodies bind. Being small molecules by 
definition however, most nanoparticles probably act as 
haptens, which are immunogenic only when attached to a 
larger carrier molecule. Chen et al. (43) demonstrated that 
the immune system can generate antibodies specific to 
nanoparticles. After the immunisation of mice with a C60 
fullerene derivate conjugated to bovine thyroglobulin, they 
produced IgG antibodies specific to fullerenes. Other 
researchers were not able to detect fullerene-specific 
antibodies, even when they used a carrier molecule (44). 
This inconsistency in results could be explained by the 
use of different fullerene derivatives or differences 
between the animal models and immunisation protocols 
employed (20). For some biomedical applications, 
nanoparticles are functionalised by growth factors, 
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receptors, and other biomolecules that may induce 
autoantibodies (20).

Several studies have shown that nanoparticles can also 
act as adjuvants, i.e. as substances that are added to the 
antigen in order to stimulate immune response (34, 44-50). 
Polymethylmethacrylate (PMMA) nanoparticles used as 
adjuvants for HIV-2 virus vaccine in mice induced up to a 
100 times higher antibody response than the conventional 
adjuvant aluminium hydroxide [Al(OH)3] (49). How exactly 
nanoparticles function as adjuvants is poorly understood, 
but some studies suggest that nanoparticles can promote 
the uptake of antigens or can stimulate antigen-presenting 
cells (20). The adjuvant-like properties of nanoparticles 
depend on their physicochemical properties. Sun et al. 
(51) found a correlation between the shape and 
crystallinity of AlOOH nanoparticles and their adjuvant 
capacity both in vitro (activation of dendritic cells) and 
in vivo (production of IgG and IgE against ovalbumin) 
(51). Li et al. (50) showed that Al(OH)3 nanoparticles 
induced a stronger humoral response than microparticles 
of the same chemical composition. Cao et al. (52) also 
found that ultra-small graphene oxide-supported gold 
nanoparticles (usGO-Au) used as an adjuvant stimulated 
humoral and cellular immune responses.

Some studies have associated exposure to nanoparticles 
with allergic reactions. Nanoparticles can increase (53-55) 
or inhibit allergic reactions (56). Chen et al. (57) reported 
that TiO2 nanoparticles directly stimulated histamine release 
from the mast cells. Mast cells can contribute to inflammation 
and the toxic effect of some nanoparticles (19). There is 
increasing evidence that mast cells have an important role 
in the biological events following nanoparticle exposure 
(58-61).

Suppression of immune response

Nanoparticles can also suppress the immune system 
(Table 1), which can weaken immune response against 
infections and cancerous cells. These immunosuppressive 
properties, on the other hand, can make nanoparticles 
useful in preventing transplant rejection, in treating 
inflammatory and autoimmune diseases, and in 
delivering immunosuppressive drugs (62-64). However, 
we still do not know which nanoparticle properties are 
responsible for immunosuppressive effects. While some 
nanoparticles are used to deliver immunosuppressive drugs, 
others have their own immunosuppressive properties. Shen 
et al. (65) have shown that Fe3O4 nanoparticles weaken the 
antigen-specific humoral response and T cell cytokine 
expression in ovalbumin-challenged mice. Mitchell et al. 
(66, 67) reported that multi-walled carbon nanotubes 
(MWCNTs) suppressed systemic humoral immunity in 
mice. Some nanoparticles have been shown to possess anti-
inflammatory properties. CeO2 nanoparticles were reported 
to reduce ROS and the level of inflammatory cytokines IL-6 
and TNF-α in murine macrophages (68). Shaunak et al. 

(69) reported that polyvalent dendrimer glucosamine 
conjugates inhibited the induction of inflammatory 
cytokines and chemokines in human macrophages and 
dendritic cells exposed to bacterial endotoxin. John et al. 
(70) have designed polymerised lipid nanoparticles that 
bind to specific selectins on inflammation-activated lung 
endothelial cells and reduce inflammation in the allergic 
airway disease. Ryan et al. (56) report that fullerene inhibits 
hypersensitivity reaction to allergens in vitro and in vivo.

Nanoparticle physicochemical properties affecting 
immune response

The effect of nanoparticles on the immune system is 
determined by their physicochemical properties (15, 20). 
For a proper interpretation of the biological effects of 
nanoparticles it is therefore important to know their 
physicochemical properties (21, 71). Warheit (72) suggests 
that a nanotoxicological experiment should be preceded by 
the characterisation of at least the following nanoparticle 
properties: size, size distribution, surface area and reactivity, 
crystallinity, aggregation in relevant medium, composition 
and surface coating, method of synthesis, and impurities. 
The effect of nanoparticles can also depend on surface ion 
dissolution (73); more soluble particles such as ZnO and 
FeO are more toxic than the less soluble ones such as 
CeO2 and TiO2 (74). Therefore, it is advisable to check 
their solubility in relevant media before testing. Nevertheless, 
some studies have shown that nanoparticle effects on the 
immune system are different from the effects of their ions 
(75-77).

Several studies have demonstrated that size significantly 
determines nanoparticle biological effects (5-7, 78-83). The 
smaller the size, the higher the relative surface area, and 
therefore the higher the dissolution of toxic ions and 
reactive oxygen species (ROS) production (71). 
Nanoparticle shape is also important for biological effects 
(84). For example, fullerenes and carbon nanotubes have 
the same chemical composition, but different shape, which 
influences their toxicological properties (85). The surface 
properties of nanoparticles affect their behaviour in 
suspensions and interactions with cell membranes. The 
surface charge correlates with nanoparticle aggregation/
agglomeration in media and with the ability to cross 
biological barriers (86). Sonication, which is often used to 
disperse nanoparticle aggregates/agglomerates in 
suspension, can accelerate ion dissolution and ROS 
production on the surface of nanoparticles (87) and increase 
cytotoxicity.

Biological effects can also be altered by impurities, 
generated as by-products in nanoparticle synthesis (31, 
88), or by endotoxins (89). We also have to take into 
consideration that the properties of nanoparticles can change 
in biological environments such as cell culture media in 
vitro or bloodstream in vivo, which can influence biological 
response to nanoparticle exposure. Several studies have 
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Table 1 Stimulation and suppression of immune response by nanoparticles

Immunostimulatory effects of nanoparticles

Observed 
immune effect

Study 
design Tested particles (size) Test system Reference

Pro-inflammatory 
effects In vitro

SiO2 (4-40 nm), 
TiO2 (20-160 nm), 
ZrO2 (5-30 nm), 
Co (50-200 nm)

Human myelomonocytes 
(U-937) 22

Ag (25, 40, 80 nm) Rat brain microvessel 
endothelial cells (RBMEC) 23

SiO2 (10, 100 nm) Human peripheral blood 
mononuclear cells (PBMC) 108

ZnO (13 nm)
Murine macrophages (RAW 
264.7) and human bronchial 
epithelial cells (BEAS-2B)

25

NiO (<50 nm)
Human bronchial epithelial cells 

(BEAS-2B) and human lung 
carcinoma cells (A549)

109

Au (3, 6, 40 nm) Murine macrophages  
(J774 A1) 110

In vivo Fe3O4 (~5 nm) ICR mice 26

SiO2 (14 nm) ICR mice 27

SiO2 (70 nm) BALB/c mice 28

SiO2 (50, 500 nm) Tuck-Ordinary mice 111

Au coated with PEG 
(4, 100 nm) BALB/c mice 29

SWCNT 
(1-4 nm × 1-3 µm) C57BL/6 mice 32

SWCNT 
(1-2 nm × 10 nm to several µm) ICR mice 112

TiO2 nanorods (diameter of 4-6 nm) Wistar rats 113

Latex nanomaterial (25, 50, 100 nm) ICR mice 80

Ag (20 nm) Brown Norway rats 114

Ag (15 nm) Fischer rats 115

Carbon black 
(15, 51, 95 nm) SH rats 24

Activation of 
the complement 

system
In vitro SWCNT 

(different sizes) Human serum 33

SWCNT coated with PEG 
(1-5 nm × 50-300 nm) Human serum 35

CNTs 
(different sizes) Human serum 38
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Table 1 continued
CNTs 

(different sizes) Human serum 39

Functionalized MWCNT 
(10-20 nm × 10-50 nm) Human serum 40

Dextran-coated Fe3O4 (50, 250, 
600 nm) Human serum 36

Nanoparticles as 
haptens In vivo C60 fullerene BALB/c mice 43

Nanoparticles as 
adjuvants In vitro AlOOH 

(different shapes and sizes)

Human leukemic monocyte 
(THP-1 ) and murine bone 

marrow derived dendritic cells 
(BMDCs)

51

usGO-Au 
(5-10 nm)

Murine macrophages  
(RAW 264.7) 52

In vivo AlOOH 
(different shapes and sizes) C57BL/6 mice 51

usGO-Au (5-10 nm) C57BL/6 mice 52

Al(OH)3 (112 nm) BALB/c mice 50

Stimulation of 
allergic reactions In vitro TiO2 (60 ± 10 nm) Rat mast cells 

(RBL-2H3) 57

In vivo TiO2 (15, 50, 100 nm) NC/Nga mice 116

Ag (10 nm) BALB/c mice 117

ZnO (20, 240 nm) BALB/c mice 118

Immunosuppressive effects of nanoparticles

Observed immune effect Study design Tested particles 
(size) Test system Reference

Anti-inflammatory effect In vitro CeO2 Murine macrophages (J774) 68

Polyvalent 
dendrimer 

glucosamine 
conjugates

Peripheral blood mononuclear 
cells (PBMCs) 69

SWCNT 
(0,8-1,2 nm × 

800 nm)

Human lung carcinoma cells 
(A549) and human bronchial 

epithelial cells (NHBE)
119

In vivo ZnO 
(20, 240 nm) BALB/c mice 118

Suppression of 
hypersensitivity, reaction to 

allergens
In vitro C60 fullerenes Human mast cells and peripheral 

blood basophils 56

In vivo C60 fullerenes C57BL/6 mice 56

Suppression of the humoral 
immune response In vivo Fe2O3 BALB/c mice 65

MWCNT 
(10-20 nm × 5-15 

µm)
C57BL/6 mice 66

MWCNT C57BL/6 mice 67
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Figure 1 Nanoparticle interaction with the immune system. The primary function of the immune system is to protect the host from 
foreign substances. When nanoparticles enter the body (I), they get in contact with different immune cells (II). Nanoparticle interactions 
with immune cells can activate immune response (IIIa). Nanoparticles can also interfere with the immune system’s recognition of other 
immunogenic substances and can stimulate or suppress immune response (IIIb). Normally, immune response gradually leads to the 
removal of foreign matter from the body, but nanoparticle interaction with immune response can have toxic consequences (IV)
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evaluated how biomolecules bound to nanoparticle surface 
(the so-called biomolecular corona) affect nanoparticle 
effects on cells (90-92). Nanoparticles that enter the 
bloodstream can bind with opsonins, which makes them 
more visible to phagocytic cells, which in turn remove 
them from the circulation (93). But, even phagocytes 
can be affected by nanoparticle toxicity (94). Therefore, 
the surface of nanoparticles that need to enter the 
bloodstream should be modified to avoid the opsonin 
binding.

Adjustment and validation of standard methods for 
testing nanoparticle interaction with the immune system

In vitro evaluation of nanoparticle effects on immune 
cells and the immune system is essential for 
comprehensive understanding of nanoparticle effects on 
living organisms in order to make their use safe. Although 
common cytotoxicity tests may be useful in identifying 
acute toxicity risks for host cells, including the immune 
cells, they do not detect the sublethal effects and the 
dysregulation of the immune system function. Therefore, 
researchers studying immunotoxicity have established a 
set of methods for testing immune function (95-99).

Due to their specific physicochemical properties 
nanoparticles can interfere with the established tests, 
which were originally developed for testing the 
biological effects of conventional chemicals. Interactions 
between nanoparticles and the test method can lead to 
false positive or false negative results (100-104). 
Because of that and because of different mechanisms 
through which nanoparticles can interact with the 
immune system, it is necessary to use a battery of broad-
range methods. There are several in vitro and in vivo 
assays for testing nanoparticle effects on the immune 
system, which have been reviewed elsewhere (105-107). 
Their protocols have to be properly adjusted and 
validated.

When studying the effects of nanoparticles on the 
immune system, we should also consider the type of the 
selected biological system as well as time and route of 
exposure. Different immune cells have different 
functions in immune response, as they have different 
receptors and uptake mechanisms.

Furthermore, when testing the long-term and chronic 
effects of nanoparticles we have to avoid the use of high 
nanoparticle concentrations that can result in acute toxicity 
and cell death.

CONCLUSIONS

Studies that have been done to date have shown that 
nanoparticles can interact with different components of the 
immune system. These interactions are diverse, complex, 
and not well understood, yet. They may result in 
unforeseen changes in the functioning of different immune 

cells, leading to unpredictable outcomes. The diversity and 
specific properties of nanoparticles make their risk 
assessment difficult. To date, the correlation between the 
properties of nanoparticles and their biological effects, 
including the effect on the immune system, are poorly 
understood. Since nanoparticles can interfere with the 
traditional testing methods developed for testing the 
biological effects of chemicals, additional attention should 
be given to the selection of appropriate methods.

Identifying the effects of nanoparticles on the immune 
system is crucial for their safe use. Nanoparticles for 
biomedical applications can be designed to interact with 
the immune system in an intended way or not to react at 
all. However, we are still a long way from being able to 
design nanoparticles that will have only a desirable 
biological effect.

Future research should focus on which nanoparticle 
property contributes to which effect. This means more in 
vitro and in vivo studies with detailed nanoparticle 
characterisation. More attention should also be given to 
determining the mechanisms of interaction between 
nanoparticles and different components of the immune 
system to understand why the same nanoparticles stimulate 
certain immune functions and suppress others.

With new findings about the interactions between 
nanoparticles and the immune system we will be able to 
make better and safer nanotechnological products.
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Interakcije nanodelcev z imunskim sistemom

Ko nanodelci vstopijo v organizem, pridejo v kontakt s celicami imunskega sistema. Nezaželene interakcije nanodelcev 
z imunskim sistemom lahko sprožijo molekularni odziv, ki lahko pripelje do toksičnih učinkov in povečane dovzetnosti 
organizma za okužbe, avtoimunska obolenja ter razvoj raka. Dosedanje raziskave so pokazale, da nanodelci lahko sprožijo 
vnetne in alergijske reakcije, lahko pa tudi aktivirajo sistem komplementa. Nanodelci lahko delujejo kot adjuvansi ali kot 
hapteni. Obstajajo pa tudi poročila, ki kažejo na sposobnost nanodelcev, da zavrejo imunski odziv. V članku bomo povzeli 
ugotovitve dosedanjih raziskav in vitro ter in vivo, ki so bile narejene na področju proučevanja vplivov nanodelcev na 
stimulacijo ali supresijo imunskega sistema sesalcev. Za zagotovitev varne uporabe nanodelcev moramo razumeti kako 
fizikalno-kemijske lastnosti nanodelcev vplivajo na njihovo obnašanje v biološkem okolju. Lastnosti nanodelcev moramo 
upoštevati tudi ob izvajanju poskusov, da se izognemo lažnim rezultatom zaradi potencialne interference nanodelcev z 
dejavniki v eksperimentalnem okolju. Čeprav je bilo do sedaj narejenih že več nanotoksikoloških raziskav, je vpliv 
nanodelcev na imunski sistem še vedno slabo razumljen. Sposobnost nanodelcev za modulacijo imunskega odziva narekuje 
potrebo po nadaljnjih raziskavah interakcij nanodelcev z imunskim sistemom.

KLJUČNE BESEDE: imunomodulacija; imunotoksičnost; imunski odziv; lastnosti nanodelcev; nanomateriali; 
nanovarnost 


